Elena Obraztsova

Single-wall carbon nanotubes
for photonics applications

A.M. Prokhorov General Physics Institute, RAS,
38 Vavilov street, 119991, Moscow, Russia
elobr@kapella.gpi.ru
In collaboration with

A.I. Chernov, A.S. Pozharov, A.S. Lobach, E.A. Obraztsova

N.N. Il’ichev, A.V. Tausenev, M.A. Solodyankin

S.V. Garnov, P.G. Kryukov, S.V. Garnov, E.M. Dianov, V.I. Konov

nanotube synthesis, treatment and diagnostics

Laser experiments and discussions
Optics of nanotubes
A raw nanotube soot

Purified ropes
A pristine nanotube soot

Chemically purified nanotubes

OPTICAL MEDIA
based on single-wall carbon nanotubes

Aqueous suspensions

Polymer films

Optical elements (mirrors, filters)
A pristine nanotube soot

Optical media based on single-wall carbon nanotubes

Chemically purified nanotubes

Aqueous suspensions

Polymer films

Optical elements (mirrors, filters)
Applications

• Transparent filters
• Photoluminescent markers
• Nanotubes for lasers
Passive mode locking –
a way to produce
ultrashort laser pulses
Continuous wave laser radiation

Train of femtosecond pulses

Output radiation

Laser crystal (active medium)

Carbon nanotubes
Laser-induced transparency (saturable absorption)

Absorption

Saturation of absorption

Transparency
• Organic dyes

• Color centers in crystals (LiF:F_2^-, alkali halides:F, …)

• Semiconductor quantum dots

• Metallic nanoparticles (Ag, Au) embedded in glass matrix

• «SESAM»:
 non-linear mirror (multilayer Fabry-Perot resonator)
Discrimination of the laser pulses of different intensity with a saturable absorber

\[\Delta I_{\text{out}} \]

\[\Delta I_{\text{in}} \]

SA
Self mode-locking: regularization of the laser output and generation of ultrashort pulses

Laser output without the saturable absorber

with the saturable absorber

\[t_1 \approx 10 \times 2L/c \]

\[t_2 \approx 100 \times 2L/c \]
Regularization of the laser output due to discrimination of laser modes with different intensity

Random phases

Mode locking

(simulation, number of modes 6)

(simulation, number of modes 6)
Since 2004, a mode-locking regime with the saturable absorbers based on CARBON NANOTUBES has been realized in a number of solid state lasers:
Wavelength “windows” for optical communications

- Nd³⁺ - glass: 1.06 μm
- YAG:Nd³⁺ - crystal: 1.06 μm
- LiF:F⁻ - crystal: 1.17 μm
- Tm-doped fiber: 1.99 μm
- Tm:YAlO₃: 1.99 μm
- Ho:YAG-crystal: 2.1 μm
Laser surgery
(especially- ophtalmology)
Laser diagnostics of contaminations in atmosphere
Time-resolved spectroscopy

- Nd:GdVO$_4$ - 1.34 µm
- YAP:Nd$^{3+}$ - crystal - 1.34 µm
- Er$^{3+}$-glass - 1.52-1.57 µm
- Tm-doped fiber - 1.93 µm
- Tm:YAlO$_3$ - 1.99 µm
- Ho:YAG-crystal - 2.1 µm
CARBON NANOTUBES (!!!):

- Universal (1-3 μm spectral range)
- Fast (sub-picosecond)
- Long-living (years)
- Low “switch on” threshold (25 mW)
- High damage threshold (>1x10^9 W/cm^2)

saturable absorber
The element introduced into the laser cavity should have a high optical quality – to keep the generation.

Tasks:

1. **To create** such materials.
2. **To perform a complex optical characterization** of such materials.

- linear optical absorption
 - photoluminescence
 - spontaneous Raman scattering
- non-linear Z-scan (non-linear absorption)
 - pump-probe
Formation of carbon nanotubes of different geometry

\[C = n \cdot a_1 + m \cdot a_2 \]
Formation of single-wall nanotube (6,3) from the graphene sheet
UltraViolet- Visible- Near-InfraRed (UV-VIS-NIR)
Optical Absorption
Two-dimensional electron dispersion in graphene

\[
E(K) = \pm \gamma_0 \left\{ 1 + 4 \cdot \cos \left(\frac{\sqrt{3} \cdot K_x \cdot a_0}{2} \right) \cdot \cos \left(\frac{K_y \cdot a_0}{2} \right) + 4 \cdot \cos^2 \left(\frac{K_y \cdot a_0}{2} \right) \right\}^{1/2}
\]
Kataura-plot:
dependence of the electron transition energy on nanotube diameter

H. Kataura et al.,
Synth. Metals 103 (1999) 2555
Hexagonal Boron Nitride

- B
- N
Density of one-electron states in graphene and in single-wall carbon nanotube
A.V. Osadchy, E.D. Obraztsova et al.,
JETP Letters 77 (2003) 405-410
A typical UV-VIS-NIR optical absorption spectrum of an ensemble of Individual single-wall carbon nanotubes

An average diameter and a diameter distribution
A “fingerprint” Raman spectrum of single-wall carbon nanotubes

Measurement of non-linear absorption
Saturable absorption
(Z-scan measurements)

Transmission, %

Z coordinate, mm

Sample data
Gauss approximation
Transmission without Frenel losses
Time-resolved measurements – pump-probe method
Absorbance change in a SWNT film as a function of delay between pump and probe pulses.

Collaboration with Prof. Yury Svirko (Joensuu University, Finland)
From a real nanotube material to optical media
Synthesis of single-wall carbon nanotubes by the **electric arc technique**

To isolate the semiconducting nanotubes, the ropes should be disintegrated!
Aqueous suspensions of single-wall carbon nanotubes of optical quality

Method *(SDBS, DOC)*

Ultracentrifuging

(acceleration > 100 000 g)

Powerful ultrasonication
A typical UV-VIS-NIR optical absorption spectrum of an ensemble of individual single-wall carbon nanotubes.
UV-VIS-NIR optical absorption of aqueous suspensions of single-wall carbon nanotubes, synthesized by different methods.
Photoluminescence of aqueous suspensions of single-wall carbon nanotubes

$\lambda_{\text{exc}} = 532 \text{ nm}$

- HipCO SWNTs
- arc SWNTs

PL Intensity, a.u.

Wavelength, nm

800 1000 1200 1400 1600

976 1026 1119 1176 1258 1382 1492 1589 1.38 nm
Formation of ultrashort laser pulses with carbon nanotubes
A first mention about using *the SWNTs as a saturable absorber*

SAINT- Saturable Absorber Incorporating NanoTubes
Non-linear optical properties of carbon nanotube suspensions
Non-linear transmission ($\lambda=1.54 \mu m$) of HipCO single-wall carbon nanotubes in aqueous suspension of SDBS/D$_2$O

N.N. Il’ichev, E.D. Obraztsova, S.V. Garnov, S.E. Mosaleva,

Quantum electronics 34 (2004) 572
Mode locking in Er3+-glass laser ($\lambda=1.54 \text{\mu m}$)

N.N. Il’ichev, E.D. Obraztsova, S.V. Garnov, S.E. Mosaleva,

Operational spectral range of solid state lasers, working in mode-lock regime with Liquid nanotube-based saturable absorbers

- Er\(^{3+}\) - glass, \(\lambda=1.54 \ \mu\text{m}\);
- YAP:Nd\(^{3+}\) - crystal, \(\lambda=1.34 \ \mu\text{m}\);
- LiF - F\(^2\) - crystal, \(\lambda\approx1.15 \ \mu\text{m}\);
- YAG:Nd\(^{3+}\) - crystal, \(\lambda=1.064 \ \mu\text{m}\);
- Nd\(^{3+}\) - glass, \(\lambda=1.055 \ \mu\text{m}\).
Polymer films incorporating single-wall carbon nanotubes
Formation of SWNT-containing polymer films

PvA or + SWNTs = cellulose

Liquid cast on a smooth substrate followed by a slow drying
Mode-locking in YAP:Nd\(^{3+}\) laser with a film-like polymer saturable absorber containing SWNTs

Solid elements are preferable for bulk solid state lasers!!!

The fiber lasers are **compact and easy integrated.**

The new elements should have these properties.
Carbon Nanotube-containing polymer films for FIBER LASERS
Saturable absorber “polymer+ arc SWNTs” for Er$^{3+}$- fiber laser

PvA and carboximethylcellulose
Insertion of a film-like SWNT-based absorber in the fiber
Scheme of Er$^{3+}$- fiber laser with a ring resonator containing a saturable absorber “arc SWNTs +PvA”

A train of sub-picosecond output laser pulses registered with PIN photodetector
The SWNT-based media is **not** a limiting factor for the pulse duration.

The pulse may be shorten via the resonator optimisation.

A.V. Tausenev, E.D. Obraztsova et al., *APL 92 (N18) (2008)171113*
Optimization of the optical media parameters
Optical losses
Thin films of a high optical quality with optical losses 5-80%.

![Graph showing transmission vs. wavelength with various curves and transmission percentages at specific wavelengths like 1340 nm.](image-url)
Optical elements based on single-wall carbon nanotubes
Efficiency = coincidence of the medium absorption maximum with the laser working wavelength
Adjustment of E_{11} absorption band parameters to the working wavelength of Tm-doped fiber laser.
Realization of self-mode locking regime in thulium fiber laser with the carbon nanotube saturable absorber

1.93 µm

Separation of single-wall carbon nanotubes over diameter.

Narrow fractions → a high efficiency.

Quantum efficiency of photoluminescence in narrow fractions is about 15%
(instead of 0.1% in ensembles)
Density gradient centrifugation – a way to get nanotube fractions with a narrow diameter distribution

M. S. Arnold, A. A. Green, M. C. Hersam et al., Nature Nanotechnology 1, 60-65 (2006).
Nanotubes with narrow diameter distributions
A.I. Chernov, E.D. Obraztsova,

K.Yanagi, Y. Miyata, and H. Kataura,
A. Green, M. Hersam, NanoLetters 8 (2008) 1417
Metallic SWNTs in suspension after density gradient centrifugation

Metallic SWNTs in thin films

Absorbance, a.u. vs. Wavelength, nm

- E_{11metal}
- E_{22sem}
- Absorbance peaks at 698, 664, 697, 960, 1018, 1.37 nm, 1.47 nm, 1.51 nm
Extension of the *working spectral range*
Demand of new saturable absorbers for the spectral range 2-3 μm

Ho, ZnSe....

The bigger tubes?
Ferrocene-aerosol-CVD technique

Collaboration with Prof. Esko Kauppinen (TKK, Helsinki)

UV-VIS-NIR optical absorption spectra of SWNTs grown with different methods

E.D. Obraztsova, A.I. Chernov et al., NDNC conf., Taiwan May 2008
Demand of new saturable absorbers at wavelengths **less than 1 \(\mu \text{m} \)**

The smallest tubes – diameter 0.3-0.4 nm – \(E_{11} \) absorption at 850 nm

\(E_{22} \) instead of \(E_{11} \)
Carboxymethylcellulose + arc SWNTs

1.06 \mu m
Yb-based fiber laser operating at 1.06 µm

PROSPECTIVES
Nanotube-based active media?
Introduction of nanotubes into the fiber core during the Fiber formation
Conclusion

Single-wall carbon nanotubes and media based on them can be efficiently used as universal saturable absorbers providing the sub-picosecond pulses formation in a wide class of bulk and fiber solid state lasers working in the spectral range 1-3 µm.
We are not alone…..

2005 – polymer films incorporating SWNTs for fiber lasers
(Rozhin et al., CPL 405 (2005) 288.

2006 - SWNTs in waveguide laser (DellaValle et al., APL 89 (2006)231115)

2007 – introduction SWNTs into the fiber core (Song et al., Optics Lett. 32 (2007)148)

2007 - SWNTs + SESAM (Fong et al., Optics Express 32 (2007) 38)

Thanks for funding to

Russian Foundation for Basic Research and

RAS programs “Femtosecond optics and new materials” and “Optical Spectroscopy and frequency standarts”
Many thanks for your attention!