|
(1.1) |
|
(1.2) |
|
(1.4) |
|
(1.7) |
|
(1.10) |
|
(1.16) |
.
|
(1.28) |
|
(1.29) |
|
(1.30) |
|
(1.31) |
|
(1.32) |
|
(1.33) |
|
(1.34) |
. |
(1.46) |
. |
(1.49) |
|
(1.55) |
. |
(1.67) |
. |
(1.68) |
. |
(1.69) |
. |
(1.73) |
. |
(1.75) |
, |
(1.81) |
. |
(1.82) |
. |
(1.83) |
, |
(1.84) |
. |
(1.85) |
. |
(1.87) |
. |
(1.88) |
, |
(1.89) |
, |
(1.90) |
. |
(1.91) |
, |
(1.92) |
, |
(1.93) |
. |
(1.94) |
|
(1.95) |
|
(1.96) |
. |
(1.97) |
, |
(1.98) |
, |
(1.99) |
|
(1.100) |
. |
(1.101) |
. |
(1.102) |
. |
(1.103) |
. |
(1.108) |
. |
(1.109) |
. |
(1.111) |
. |
(1.112) |
. |
(1.113) |
. |
(1.114) |
, |
(1.115) |
. |
(1.116) |
. |
(1.118) |
. |
(1.119) |
. |
(1.120) |
. |
(1.121) |
, |
(1.129) |
, |
(1.130) |
, |
(1.131) |
, |
(1.132) |
, |
(1.133) |
. |
(1.134) |
|
(1.135) |
. |
(1.136) |
. |
(1.137) |
, |
(1.139) |
. |
(1.140) |
|
(1.141) |
, |
(1.142) |
. |
(1.143) |
. |
(1.144) |
, |
(1.145) |
, |
(1.146) |
. |
(1.147) |
|
(1.149) |
, |
(1.150) |
, |
(1.151) |
, |
(1.152) |
. |
(1.153) |
, |
(1.154) |
. |
(1.155) |
|
(1.156) |
, |
(1.157) |
. |
(1.158) |
, |
(1.159) |
, |
(1.160) |
, |
(1.161) |
. |
(1.163) |
. |
(1.164) |
. |
(1.166) |
, |
(1.168) |
, |
(1.169) |
, |
(1.170) |
, |
(1.171) |
. |
(1.172) |
, |
(1.173) |
, |
(1.175) |
. |
(1.176) |
, |
(1.178) |
. |
(1.179) |
, |
(1.180) |
, |
(1.181) |
. |
(1.182) |
|
(1.184) |
. |
(1.185) |
, |
(1.186) |
|
(1.187) |
, |
(1.189) |
. |
(1.190) |
, |
(1.192) |
, |
(1.193) |
. |
(1.194) |
. |
(1.195) |
, |
(1.196) |
. |
(1.197) |
. |
(1.198) |
,
. |
(1.199) |
, |
(1.200) |
. |
(1.201) |
. |
(1.203) |
|
(1.205) |
|
(1.206) |
|
(1.207) |
. |
(1.208) |
. |
(1.211) |
|
(1.212) |
|
(1.214) |
|
(1.215) |
, |
(1.216) |
, |
(1.218) |
. |
(1.219) |
. |
(1.220) |
|
(1.221) |
|
(1.222) |
. |
(1.223) |
, |
(1.224) |
. |
(1.225) |
, |
(1.226) |
. |
(1.227) |
. |
(1.228) |
. |
(1.229) |
. |
(1.230) |
. |
(1.231) |
. |
(1.232) |
, |
(1.233) |
1.5. Список литературы к
Главе 1
- Chelikowsky J. R., Louie S. G./ Ed. Quantum Theory of Real Materials. Boston: Kluwer Press, 1996.
- Alfe D., Gillan M. J., Price G. D. Melting curve of iron at Earth's core pressures from ab initio calculations// Nature. 1999. V. 401. P. 462.
- Slater J. C. The theory of complex spectra// Phys. Rev. 1929. V. 34. P. 1293.
- Turner A. A modern valence bond study of charge-transfer processes of astrophysical interest: Ph. D. Thesis, 1995.
- Фларри Р. Квантовая химия. М.: Мир, 1985.
- Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. Ростов-на-Дону: Феникс, 1997.
- Herring C. A new method for calculating wave function in crystals// Phys. Rev. 1940. V. 57. P. 1169.
- Slater J. C. Wave function in periodic potential// Ibid. 1937. V. 51. P. 846.
- Харрисон У. Теория твердого тела. М.: Мир, 1972.
- Dorsett H., White A. Overview of molecular modelling and ab initio molecular orbital methods suitable for use with energetic materials// DSTO Aeronautical and Maritime Research Laboratory. Australia, 2000.
- Романова Т. А., Краснов П. О., Качин С. В., Аврамов П. В. Теория и практика компьютерного моделирования нанообъектов. Красноярск: КГТУ, 2002. (Мультимедийное издание.)
- Krasheninnikov A. V. Introduction to electronic structure calculations// Lectures notes. 2002
- Thomas L. H.// Proc. Cambridge Philos. Soc. 1926. V. 23. P. 542; Fermi E.// Z. Phys. 1928. V. 48. P. 73.
- Зиненко В. И., Сорокин Б. П., Турчин П. П. Основы физики твердого тела. М.: Изд-во физ.-мат. лит., 2001.
- Kohanoff J., Gidopoulos N. I. Density Functional Theory: Basics, New Trends and Applications/ S. Wilson (Ed.); Handbook of Molecular Physics and Quantum Chemistry. Vol. 2, part 5, chap. 26. Chichester: John Wiley & Sons, Ltd, 2003. P. 532—568.
- Jones R. O., Gunnarsson O. The density functional formalism, its applications and prospects// Rev. Mod. Phys. 1989. V. 61. P. 689.
- March N. H.// Adv. Phys. 1957. V. 6. P. 1.
- March N. H.// Theor. Chem.: A Specialist’s Periodic Report. 1981. V. 4. P. 92.
- Lieb E. H., Simon B. Tomas-Fermi Theory Revisited// Phys. Rev. Lett. 1973. V. 31. P. 681.
- Lieb E.H. The stability of matter// Rev. Mod. Phys. 1976. V. 48. P. 553; Thomas-Fermi and related theories of atoms and molecules// Rev. Mod. Phys. 1981. V. 53. P. 603.
- Кон В. Электронная структура вещества — волновые функции и функционалы плотности// УФН. 2002. Т. 172, № 3. С. 336.
- Kohn W., Sham L. J. Self-Consistent equations including exchange and correlation effects// Phys. Rev. 1965. V. 140. P. A1133.
- Hohenberg P., Kohn W. Inhomogeneous Electron Gas// Ibid. 1964. V. 136. P. B864.
- Kohn W.// Highlights of Condensed-Matter Theory (Proc. of the Intern. School of Physics «Enrico Fermi», Course 89)/ Ed. F. Bassani, F. Fumi, M. P. Tosi. Amsterdam: North-Holland, 1985. P. 4.
- Лундквист С., Марч Н. Теория неоднородного электронного газа. М.: Мир, 1987.
- Payne M. C., Teter M. P., Allan D. C. et al. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients// Rev. Mod. Phys. 1992. V. 64, N 4. P. 1045.
- Wigner E. P. Effects of the electron interaction on the energy levels of electrons in metals// Trans. Faraday. Soc. 1938. V. 34. P. 678.
- Ceperly D. M. Ground state of the fermion one-component plasma: A Monte Carlo study in two and three dimensions// Phys. Rev. 1978. V. B18. P. 3126.
- Ceperly D. M., Alder B. J. Ground state of the electron gas by a stochastic method// Phys. Rev. Lett. 1980. V. 45. P. 566.
- Perdew J. P., Zunger A. Self-interaction correction to density-functional approximations for many-electron systems// Phys. Rev. 1981. V. B23. P. 5048.
- Cottenier S. Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction/ Instituut voor Kernen Stralingsfysica, K. U. Leuven. Belgium, 2002.
- Fuchs M., Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory// Comp. Phys. Commun. 1999. V. 119. P. 67.
- Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas// Phys. Rev. 1986. V. B33. P. 8822; Perdew J. P., Chevary A., Vosko S. H. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation// Ibid. 1992. V. B46. P. 6671; Perdew J. P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy// Phys. Rev. 1992. V. B45. P. 13244; Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple// Phys. Rev. Lett. 1996. V. 77. P. 3865.
- Asada T., Terakura K. Generalized-gradient-approximation study of the magnetic and cohesive properties of bcc, fcc, and hcp Mn// Phys. Rev. 1993. V. B47. P. 15992.
- Eder M., Moroni E. G., Hafner J. Structure and magnetic properties of thin Mn/Cu(001) and CuMn/Cu(100) films// Surf. Sci. 1999. V. 423, N 1. P. 244.
- Pérez-Jordá J. M., Becke A. D. A density-functional study of van der Waals forces: rare gas diatomics// Chem. Phys. Lett. 1995. V. 233. P. 134.
- Ястребов Л. И., Кацнельсон А. А. Основы одноэлектронной теории твердого тела. М.: Наука, 1981.
- Fermi E.// Nuovo Cimento. 1934. V. 11. P. 157.
- Chelikowsky J. R. The Pseudopotential-Density Functional Method (PDFM) Applied to Nanostructures// J. Phys. D: Appl. Phys. 2000. V. 33. P. R33.
- Hamann D. R., Schlüter M., Chiang C. Norm-Conserving Pseudopotentials// Phys. Rev. Lett. 1979. V. 43. P. 1494.
- Troullier N., Martins J. L. Efficient pseudopotentials for plane-wave calculations// Phys. Rev. 1991. V. B43. P. 1993.
- Bachelet G., Hamann D. R., Schlüter M. Pseudopotentials that work: From H to Pu// Ibid. 1982. V. B26. P. 4199.
- Kerker G. P. Non-singular atomic pseudopotentials for solid state applications// J. Phys. 1980. V. C13. P. L189.
- Greenside H. S., Schlüter M. Pseudopotentials for the 3d transition-metal elements// Phys. Rev. 1983. V. B28. P. 535.
- Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism// Ibid. 1990. V. B41. P. 7892.
- Blöchl P. E. Generalized separable potentials for electronic-structure calculations// Ibid. 1990. V. B41. P. 5414.
- Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method// Ibid. 1999. V. B59. P. 1758.
- Laasonen K., Pasquarello A., Car R. et al. Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials// Ibid. 1993. V. B47. P. 10142.
- Kresse G., Hafner J. Ab initio molecular dynamics for open-shell transition metals// Ibid. 1993. V. B48. P. 13115; Kresse G., Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements// J. Phys.: Condens. Matter. 1994. V. 6. P. 8245; Uchiyama T., Tsukada M. Atomic and electronic structures of oxygen-adsorbed Si(001) surfaces// Phys. Rev. 1995. V. B53. P. 7917; Yamauchi J., Tsukada M., Watanabe S., Sugino O. First-principles study on energetics of c-BN(001) reconstructed surfaces// Idid. 1996. V. B54. P. 5586; Sawada H., Morikawa Y., Terakura K., Hamada N. Jahn-Teller distortion and magnetic structures in LaMnO3// Ibid. 1997. V. B56. P. 12154; Сorso D., Pasquarello A., Baldereschi A. Density-functional perturbation theory for lattice dynamics with ultrasoft pseudopotentials// Idid. 1997. V. B56. P. 11369.
- Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set// Phys. Rev. 1996. V. B54. P. 11169.
- Kresse G., Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set// Comput. Mater. Sci. 1996. V. 6. P. 15.
- Moroni E. G., Kresse G., Hafner J., Furthmüller J. Ultrasoft pseudopotentials applied to magnetic Fe, Co, and Ni: From atoms to solids// Phys. Rev. 1997. V. B56. P. 15629.
- Louie S. G., Froyen S., Cohen M. L. Nonlinear ionic pseudopotentials in spin-density-functional calculations// Ibid. 1982. V. B26. P. 1738.
- http://cst-www.nrl.navy.mil/bind/
- Saito R., Dresselhaus G., Dresselhaus M. S. Physical properties of Carbon Nanotubes. London: Imperial College Press, 1999.
- Slater J. C., Koster G. F. Simplified LCAO method for the periodic potential problem// Phys. Rev. 1954. V. 94. P. 1498.
- Lennard-Jones J. E.// Proc. Roy. Soc. 1924. V. A106. P. 463; Lennard-Jones J. E. Wave functions of many-electron atoms// Proc. Camb. Phil. Soc. 1931. V. 27. P. 469.
- Maruyama S. Molecular dynamics method for microscale heat transfer// W. J. Minkowycz, E. M. Sparrow (Eds). Advances in Numerical Heat Transfer. V. 2, Chap. 6. New York: Taylor & Francis, 2000. P. 189—226.
- Malescio G. Intermolecular potentials — past, present, future// Nature Materials. 2003. V. 2. P. 501.
- Смирнов Б. М. Скейлинг в атомной и молекулярной физике// УФН. 2001. Т. 171, № 12. С. 1291.
- Stoddard S. D., Ford J. Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System// Phys. Rev. 1973. V. A8. P. 1504.
- Кривцов А. М., Кривцова Н. В. Метод частиц и его использование в механике деформируемого твердого тела// Дальневосточный математический журнал. 2002. Т. 3, № 2. С. 254.
- Wilson N. T. The structure and dynamics of noble metal clusters: PhD Thesis, 2000.
- Morse P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels// Phys. Rev. 1929. V. 34. P. 57.
- Girifalco L. A., Weizer V. G. Application of the Morse potential function to cubic metals// Ibid. 1959. V. 114. P. 687.
- Stillinger F. H., Weber T. A. Computer simulation of local order in condensed phases of silicon// Ibid. 1985. V. B31. P. 5262.
- Watanabe T., Ohdomari I. Modeling of SiO2/Si(100) interface structure by using extended-Stillinger-Weber potential// Thin Solid Films. 1999. V. 343—344. P. 370.
- Nozaki T., Doyama M., Kogure Y., Yokotsuka T. Micromachining of pure silicon by molecular dynamics// Ibid. 1998. V. 334. P. 221.
- Abell G. C. Empirical chemical pseudopotential theory of molecular and metallic bonding// Phys. Rev. 1985. V. B31. P. 6184.
- Tersoff J. New empirical model for the structural properties of silicon// Phys. Rev. Lett. 1986. V. 56. P. 632.
- Brenner D. W., Shenderova O. A., Harrison J. A. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons// J. Phys.: Condens. Matter. 2002. V. 14. P. 783.
- Brenner D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films// Phys. Rev. 1990. V. B42. P. 9458.
- Harrison J. A., Stuart S. J., Robertson D. H., White C. T. Properties of capped nanotubes when used as SPM tips// J. Phys. Chem. 1997. V. B101. P. 9682.
- Belova E., Chernozatonskii L. «Spring» behavior of «bough» CNT junctions// Abstracts of 7th Biennial International Workshop Fullerenes and Atomic Clusters «IWFAC», St. Petersburg, Russia, 27 June — 1 July, 2005. P. 191.
- Garg A., Han J., Sinnott S. B. Interactions of Carbon-Nanotubule Proximal Probe Tips with Diamond and Graphene// Phys. Rev. Lett. 1998. V. 81. P. 2260.
- Garg A., Sinnott S. B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes// Chem. Phys. Lett. 1998. V. 295. P. 273.
- Garg A., Sinnott S. B. Generalized dielectric breakdown model// Phys. Rev. 1999. V. B60. P. 786.
- Srivastava D., Brenner D. W., Schall J. D. et al. Predictions of enhanced chemical reactivity at regions of local conformational strain on carbon nanotubes: kinky chemistry// J. Phys. Chem. 1999. V. B103. P. 4330.
- Cleri F., Rosato V. Tight-binding potentials for transitions metals and alloys// Phys. Rev. 1993. V. B48. P. 22.
- Foiles S. M. Application of the embedded-atom method to liquid transition metals// Ibid. 1985. V. B32. P. 3409.
- Foiles S. M., Baskes M. I., Daw M. S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys// Ibid. 1986. V. B33. P. 7983.
- Daw M. S., Foiles S. M., Baskes M. I. The embedded atom method: a review of theory and applications// Mat. Sci. Rep. 1993. V. 9. P. 251.
- Johnson R. A. Analytic nearest-neighbor model for fcc metals// Phys. Rev. 1988. V. B37. P. 3924.
- Johnson R. A. Alloy models with embedded-atom method// Ibid. 1989. V. B39. P. 12554.
- Ercolessi F., Adams J. B. Interatomic potentials from first-principles calculations: the Force-Matching method// Europhys. Lett. 1994. V. 26. P. 583.
- Ercolessi F., Tosatti E., Parrinello M. Au (100) Surface Reconstruction// Phys. Rev. Lett. 1986. V. 57. P. 719.
- Ercolessi F., Tosatti E., Parrinello M. Simulation of gold in the glue model. Phil. Mag. 1988. V. A58. P. 213.
- Voter A. F., Chen S. P. Accurate interatomic potentials for nickel, aluminum and nickel-aluminum (Ni3Al)// Mater. Res. Soc. Symp. Proc. 1987. V. 82. P. 175.
- Chen S. P., Voter A. F., Srolovitz D. J. Computer simulation of grain boundaries in Ni/sub 3/Al: the effect of grain boundary composition// Scr. Metall. 1989. V. 20, N 10. P. 1389.
- Oh D., Johnson R. Simple embedded atom method model for fcc and hcp metals// J. Mater. Res. 1988. V. 3, N 3. P. 471.
- Pasianot R., Savino E. J. Embedded-atom method interatomic potentials for hcp metals// Phys. Rev. 1992. V. B45. P. 12704.
- Finnis M. W., Sinclair J. E. A simple empirical N-body potential for transition metals// Phil. Mag. 1984. V. A50. P. 45.
- Ackland G. J., Thetford R. An improved n-body semiempirical model for body-centered cubic transition-metals// Ibid. 1987. V. A56. P. 15.
- Oh D., Johnson R. Analytic embedded atom method model for bcc metals// J. Mater. Res. 1989. V. 4, N 5. P. 1195.
- Ercolessi F. A molecular dynamics primer// Spring College in Computational Physics/ ICTP, Trieste, June 1997.
- Robles M., Mustoneny V., Kaskiz K. Molecular dynamic study of a single dislocation in a two-dimensional Lennard-Jones system// Int. J. of Mod. Phys. 2003. V. C14, N 4. P. 407.
- Liu P., Wang Y. Theoretical study on the structure of Cu(110)-p2×1-O reconstruction// J. Phys.: Condens. Matter. 2000. V. 12. P. 3955.
- Shimizu A., Tachikawa H. Molecular dynamics simulation on diffusion of lithium atom pair in C150H30 cluster model for glassy carbon at very low temperatures// Electrochimica Acta. 2003. V. 48. P. 1727.
- Webb R., Kerford M., Way A., Wilson I. Comparison of gold and carbon cluster impacts on graphite using Molecular Dynamics simulation// Nuclear Instruments and Methods in Physics Research. 1999. V. B153. P. 284.
- Романова Т. А., Краснов П. О., Аврамов П. В. Изменение электронной структуры гема при образовании комплекса с оксидом азота и динамика атомного остова при физиологической температуре// Докл. РАН. 2001. Т. 380, № 2. С. 263.
- Tuckerman M. E., Martyna G. J. Understanding modern molecular dynamics: techniques and applications// J. Phys. Chem. 2000. V. B104. P. 159.
- Verlet L. Computer «experiments» on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules// Phys. Rev. 1967. V. 159. P. 98; Verlet L. Computer «experiments» on classical fluids. II. equilibrium correlation functions// Phys. Rev. 1967. V. 165. P. 201.
- Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. Т. 1. М.: Мир, 1967.
- Rahman A. Сorrelations in the motion of atoms in liquid argon// Phys. Rev. 1964. V. 136. P. A405.
- Kuronen A. Introduction to atomistic simulations// Lecture notes. 2004.
- Car R., Parinello M. Unified approach for molecular dynamics and density-functional theor// Phys. Rev. Lett. 1985. V. 55. P. 2471.
- Аврамов П. В., Овчинников С. Г. Квантово-химическое и молекулярно-динамическое моделирование структуры и свойств углеродных наноструктур и их производных. Новосибирск: Изд-во СО РАН, 2000.
- Soler J. M., Artacho E., Gale J. D. et al. The SIESTA method for ab-initio order-N materials simulation// J. Phys.: Condens. Matter. 2002. V. 14. P. 2745.
- Kim J., Mauri F., Galli G. Total-energy global optimizations using nonorthogonal localized orbitals// Phys.Rev. 1995. V. B52. P. 1640.
- Maseras F., Morokuma K. IMOMM: A New Ab Initio + Molecular Mechanics Geometry Optimization Scheme of Equilibrium Structures and Transition States// J. Comp. Chem. 1995. V. 16. P. 1170.
- Svensson M., Humbel S., Froese R. D. J. et al. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)3)2 + H2 Oxidative Addition// J. Phys. Chem. 1996. V. 100. P. 19357.
- Haynes P. D., Payne M. C. An ab initio linear-scaling scheme// Mol. Simul. 2000. V. 25. P. 257.
- Bowler D. R., Gillan M. J. Length-scale ill conditioning in linear-scaling DFT// Comp. Phys. Comm. 1998. V. 112. P. 103.
- Briggs E. L., Sullivan D. J., Bernholc J. Large-scale electronic structure calculations with multigrid acceleration// Phys. Rev. 1995. V. B52. P. 5471.
- Venkatesh P. K. Ab initio density functional theory calculations in the real space// Physica. 2002. V. B318. P. 121.
- Yang W. Direct calculation of electron density in density-functional theory// Phys. Rev. Lett. 1991. V. 66. P. 1438.
- Li X. P., Nunes R. W., Vanderbilt D. Density-matrix electronic-structure method with linear system-size scaling// Phys. Rev. 1993. V. B47. P. 10891.
- McWeeny R. Some recent advances in density matrix theory//. Rev. Mod. Phys. 1960. V. 32. P. 335.
- Kohn W. Density functional and density matrix method scaling linearly with the number of atoms// Phys. Rev. Lett. V. 76. 1996. P. 3168.
- Ordejon P. Order-N tight-binding methods for electronic-structure and molecular dynamics// Comput. Mat. Sci. 1998. V. 12. P. 157.
- Scuseria G. E. Linear scaling density functional calculations with Gaussian orbitals// J. Phys. Chem. 1999. V. A103. P. 4782.
- Kudin K. N., Scuseria G. E. Linear-scaling density-functional theory with Gaussian orbitals and periodic boundary conditions: Efficient evaluation of energy and forces via the fast multipole method// Phys. Rev. 2000. V. B61. P. 16440.
- Wannier G. H. The structure of electronic excitation levels in insulating crystals// Ibid. 1937. V. 52. P. 191.